By Topic

Application of extension theory to PD pattern recognition in high-voltage current transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mang-Hui Wang ; Inst. of Inf. & Electr. Energy, Nat. Chin-Yi Inst. of Technol., Taichung, Taiwan ; Chih-Yung Ho

This paper presents a novel partial-discharge (PD) recognition method based on the extension theory for high-voltage cast-resin current transformers (CRCTs). First, a commercial PD detector is used to measure the three-dimensional (3-D) PD patterns of the high-voltage CRCTs, then three data preprocessing schemes that extract relevant features from the raw 3-D-PD patterns are presented for the proposed PD recognition method. Second, the matter-element models of the PD defect types are built according to PD patterns derived from practical experimental results. Then, the PD defect in a CRCT can be directly identified by degrees of correlation between the tested pattern and the matter-element models which have been built up. To demonstrate the effectiveness of the proposed method, comparative studies using a multilayer neural network and k-means algorithm are conducted on 150 sets of field-test PD patterns of 23-kV CRCTs with rather encouraging results.

Published in:

Power Delivery, IEEE Transactions on  (Volume:20 ,  Issue: 3 )