Cart (Loading....) | Create Account
Close category search window

An efficient merging scheme for prescribed skew clock routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chaturvedi, R. ; Analog Devices Inc., Wilmington, MA, USA ; Jiang Hu

In ultra-deep submicron very large-scale integration (VLSI) designs, clock network layout plays an increasingly important role on determining circuit quality indicated by timing, power consumption, cost, power-supply noise, and tolerance to process variations. In this brief, a new merging scheme is proposed for prescribed nonzero skew routings which are useful in reducing clock cycle time, suppressing power-supply noise, and improving tolerance to process variations. This technique is simple and easy to implement for practical applications. Experimental results on benchmark circuits with both buffered and unbuffered routings exhibit large improvement on wirelength and buffer cost compared with other existing works.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.