By Topic

A hardware-efficient technique to implement a trellis code modulation decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anh Dinh ; Dept. of Electr. Eng., Univ. of Univ. of Saskatchewan, Saskatoon, Canada ; Xiao Hu

This brief presents a new technique in implementing a very large-scale integration trellis code modulation (TCM) decoder. The technique aims to reduce hardware complexity and increase decoding throughput. The technique is introduced in the design of a Viterbi decoder. To simplify the decoding algorithm and calculation, branch cost distances are pre-calculated and stored in a distance look-up table (DLUT). The concept of DLUT significantly reduces hardware requirements as this table eliminates the need for calculation circuitry. In addition, an output LUT (OLUT) is constructed based on the trellis diagram of the code. This table generates the decoding output using information provided by the algorithm. The use of this OLUT reduces the amount of storage requirement. The technique was used to design a 16-state, radix-4 codec for two-dimensional and four-dimensional TCM. The decoder was implemented in hardware after functional simulation. The tested ASIC has a core area of 1.1 mm/sup 2/ in 0.18-/spl mu/m CMOS. A decoding speed of 1 Gbps was achieved. Implementation results have shown that LUTs can be used to decrease hardware requirement and increase decoding speed.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 6 )