Cart (Loading....) | Create Account
Close category search window

Dynamic routing and wavelength assignment in the presence of wavelength conversion for all-optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaowen Chu ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., China ; Bo Li

Blocking probability has been one of the key performance indexes in the design of wavelength-routed all-optical WDM networks. Existing research has demonstrated that an effective Routing and Wavelength Assignment (RWA) algorithm and wavelength conversion are two primary vehicles for improving the blocking performance. However, these two issues have largely been investigated separately; in particular the existing RWA algorithms have seldom considered the presence of wavelength conversion. In this paper, we firstly demonstrate that the existing dynamic RWA algorithms do not work well in the presence of wavelength conversion as they usually only take into account the current traffic, and do not explicitly consider the route lengths. We then propose a weighted least-congestion routing and first-fit wavelength assignment (WLCR-FF) algorithm that considers both the current traffic load and the route lengths jointly. We further introduce an analytical model that can evaluate the blocking performance for WLCR algorithm. We carry out extensive numerical studies over typical topologies including ring, mesh-torus, and the 14-node NSFNET; and compare the performance of WLCR-FF with a wide variety of existing routing algorithms including static routing, fixed-alternate routing and least-loaded routing. The results conclusively demonstrate that the proposed WLCR-FF algorithm can achieve much better blocking performance in the presence of sparse or/and full wavelength conversion.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.