By Topic

User-level performance of channel-aware scheduling algorithms in wireless data networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Borst, S. ; Dept. of Math. & Comput. Sci., Eindhoven Univ. of Technol., Netherlands

Channel-aware scheduling strategies, such as the Proportional Fair algorithm for the CDMA 1xEV-DO system, provide an effective mechanism for improving throughput performance in wireless data networks by exploiting channel fluctuations. The performance of channel-aware scheduling algorithms has mostly been explored at the packet level for a static user population, often assuming infinite backlogs. In the present paper, we focus on the performance at the flow level in a dynamic setting with random finite-size service demands. We show that in certain cases the user-level performance may be evaluated by means of a multiclass Processor-Sharing model where the total service rate varies with the total number of users. The latter model provides explicit formulas for the distribution of the number of active users of the various classes, the mean response times, the blocking probabilities, and the throughput. In addition we show that, in the presence of channel variations, greedy, myopic strategies which maximize throughput in a static scenario, may result in sub-optimal throughput performance for a dynamic user configuration and cause potential instability effects.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 3 )