By Topic

Mechanism for slow switching effect in advanced low-voltage, high-speed Pb(Zr1-xTix)O3 ferroelectric memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ching-Wei Tsai ; Macronix Int. Co. Ltd., Hsinchu, Taiwan ; Sheng-Chih Lai ; Yen, C.T. ; Hao-Ming Lien
more authors

Slow-switching effect in PZT ferroelectric memory under low-voltage and high-speed operation is observed. The slow-switching effect becomes worse at lower operation voltage and elevated temperature. This effect significantly reduces the sensing margin and causes severe reliability issue for advanced ferroelectric memory, particularly for low-voltage and high-speed applications. This slow-switching effect is believed to be attributed to slowing down of polarization switching caused by band bending from Schottky built-in potential at the electrode/ferroelectric interface. The proposed mechanism is supported by the polarity dependence in an asymmetric LNO/PZT/Pt sample.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:5 ,  Issue: 2 )