By Topic

Efficiently mining frequent trees in a forest: algorithms and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zaki, M.J. ; Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA

Mining frequent trees is very useful in domains like bioinformatics, Web mining, mining semistructured data, etc. We formulate the problem of mining (embedded) subtrees in a forest of rooted, labeled, and ordered trees. We present TREEMINER, a novel algorithm to discover all frequent subtrees in a forest, using a new data structure called scope-list. We contrast TREEMINER with a pattern matching tree mining algorithm (PATTERNMATCHER), and we also compare it with TREEMINERD, which counts only distinct occurrences of a pattern. We conduct detailed experiments to test the performance and scalability of these methods. We also use tree mining to analyze RNA structure and phylogenetics data sets from bioinformatics domain.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 8 )