Cart (Loading....) | Create Account
Close category search window
 

Performance evaluation of deterministic routings, multicasts, and topologies on RHiNET-2 cluster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Koibuchi, M. ; Dept. of Inf. & Comput. Sci., Keio Univ., Yokohama, Japan ; Watanabe, K. ; Otsuka, T. ; Amano, H.

System area networks (SANs), which usually accept arbitrary topologies, have been used to connect nodes in PC/WS clusters or high-performance storage systems. Although deadlock-free routings, multicasts, and topologies for SANs have been widely developed, their evaluation on real PC clusters was rarely done. Thus, the evaluation of routings, multicasts, and topologies in real systems is important to analyze their impact on the total systems and validate their simulation results. In this paper, we implement and evaluate deadlock-free routings and unicast-based multicasts under various topologies and channel buffer sizes on a PC cluster called RHiNET-2 with 64 hosts. Execution results show that descending layers (DL) routing and structured channel pools improve up to 57 percent of bandwidth and 34 percent of barrier synchronization time compared with up*/down* routing. They also show that, by visiting hosts in numerical order, execution time of unicast-based barrier synchronization is improved up to 28 percent compared with that in random order. However, channel buffer sizes don't affect the bandwidth in the RHiNET-2 cluster. In addition to fundamental evaluation, we appraise them using NAS Parallel Benchmarks, and the DL routing achieves 3.2 percent improvement on their execution time compared with up*/down* routing.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 8 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.