By Topic

Soft-error filtering: A solution to the reliability problem of future VLSI digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Savaria ; Ecole Polytechique de Montréal, Que., Canada ; N. C. Rumin ; J. F. Hayes ; V. K. Agarwal

As the semiconductor industry continues to scale down the feature sizes in VLSI digital circuits, soft errors will eventually limit the reliability of these circuits. An important source of these errors will be the products of radioactive decay. It is proposed to combat these transient errors by a new technique called soft-error filtering (SEF). This is based on filtering the input to every latch in the VLSI circuit, thereby preventing these transients, generated by alpha particle hits in the combinational section, from being latched in the corresponding registers. Several approaches to the problem of designing filtering latches are compared. This comparison demonstrates the superiority of a double-filter realization. The design for a CMOS implementation of the double-filter latch is presented. Not only is the design simple and efficient, but it can be expected to be tolerant to process variations. A comparison of SEF with conventional techniques for dealing with soft errors shows the former to be generally much more attractive, from the point of view of both area and time overhead.

Published in:

Proceedings of the IEEE  (Volume:74 ,  Issue: 5 )