By Topic

The fast Hartley transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bracewell, R.N. ; Stanford University, Stanford, CA, USA

A fast algorithm has been worked out for performing the Discrete Hartley Transform (DHT) of a data sequence of N elements in a time proportional to Nlog2N. The Fast Hartley Transform (FHT) is as fast as or faster than the Fast Fourier Transform (FFT) and serves for all the uses such as spectral analysis, digital processing, and convolution to which the FFT is at present applied. A new timing diagram (stripe diagram) is presented to illustrate the overall dependence of running time on the subroutines composing one implementation; this mode of presentation supplements the simple counting of multiplies and adds. One may view the Fast Hartley procedure as a sequence of matrix operations on the data and thus as constituting a new factorization of the DFT matrix operator; this factorization is presented. The FHT computes convolutions and power spectra distinctly faster than the FFT.

Published in:

Proceedings of the IEEE  (Volume:72 ,  Issue: 8 )