By Topic

30-MJ superconducting magnetic energy storage system for electric utility transmission stabilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rogers, J.D. ; Los Alamos National Laboratory, Los Alamos, NM ; Schermer, R.I. ; Miller, B.L. ; Hauer, J.F.

A superconducting magnetic energy storage (SMES) system has been built to damp power oscillations on the Western U.S. Power System, particularly on the Pacific AC Intertie that is used to transmit power from the Northwest to southern California. The 30-MJ superconducting inductor that stores energy for this purpose is contained in a nonconducting dewar and is supported by a helium refrigerator and a gas-handling system mounted on trailers. Energy flows in and out of the inductor at frequencies from 0.1 to 1.0 Hz with power amplitudes up to 11 MW. The principal oscillation to be damped has a characteristic frequency of 0.35 Hz. The superconducting coil maximum current is 5 kA with terminal voltages up to 2.2 kV. The coil interfaces with the Bonneville Power Administration 13.8-kV bus at the Tacoma Substation through a converter and transformers. The system can be operated with the converter either in parallel-bridge mode or for constant VAR control with the bridges in buck-boost mode. The program for the design, fabrication, installation, and the preliminary experimental operation of the system is reviewed.

Published in:

Proceedings of the IEEE  (Volume:71 ,  Issue: 9 )