Cart (Loading....) | Create Account
Close category search window
 

The Stanford Cart and the CMU Rover

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moravec, H.P. ; Carnegie-Mellon University, Pittsburgh, PA

The Stanford Cart was a remotely controlled TV-equipped mobile robot. A computer program was written which drove the Cart through cluttered spaces, gaining its knowledge of the world entirely from images broadcast by an on-board TV system. The CMU Rover is a more capable, and neatly operational, robot being built to develop and extend the Stanford work and to explore new directions. The Cart used several kinds of stereopsis to locate objects around it in three dimensions and to deduce its own motion. It planned an obstacle-avoiding path to a desired destination on the basis of a model built with this information. The plan changed as the Cart perceived new obstacles on its journey. The system was reliable for short runs, but slow. The Cart moved 1 m every 10 to 15 min, in lurches. After rolling a meter it stopped, took some pictures, and thought about them for a long time. Then it planned a new path, executed a little of it, and paused again. It successfully drove the Cart through several 20-m courses (each taking about 5 h) complex enough to necessitate three or four avoiding swerves; it failed in other trials in revealing ways. The Rover system has been designed with maximum mechanical and control system flexibility to support a wide range of research in perception and control. It features an omnidirectional steering system, a dozen on-board processors for essential real-time tasks, and a large remote computer to be helped by a high-speed digitizing/data playback unit and a high-performance array processor. Distributed high-level control software similar in organization to the Hearsay II speech-understanding system and the beginnings of a vision library are being readied. By analogy with the evolution of natural intelligence, we believe that incrementally solving the control and perception problems of an autonomous mobile mechanism is one of the best ways of arriving at general artificial intelligence.

Published in:

Proceedings of the IEEE  (Volume:71 ,  Issue: 7 )

Date of Publication:

July 1983

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.