By Topic

Reconstruction algorithms: Transform methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lewitt, R.M. ; University of Pennsylvania, Philadelphia, PA

Transform methods for image reconstruction from projections are based on analytic inversion formulas. In this tutorial paper, the inversion formula for the case of two-dimensional (2-D) reconstruction from line integrals is manipulated into a number of different forms, each of which may be discretized to obtain different algorithms for reconstruction from sampled data. For the convolution-backprojection algorithm and the direct Fourier algorithm the emphasis is placed on understanding the relationship between the discrete operations specified by the algorithm and the functional operations expressed by the inversion formula. The performance of the Fourier algorithm may be improved, with negligible extra computation, by interleaving two polar sampling grids in Fourier space. The convolution-backprojection formulas are adapted for the fan-beam geometry, and other reconstruction methods are summarized, including the rho-filtered layergram method, and methods involving expansions in angular harmonics. A standard mathematical process leads to a known formula for iterative reconstruction from projections at a finite number of angles. A new iterative reconstruction algorithm is obtained from this formula by introducing one-dimensional (1-D) and 2-D interpolating functions, applied to sampled projections and images, respectively. These interpolating functions are derived by the same Fourier approach which aids in the development and understanding of the more conventional transform methods.

Published in:

Proceedings of the IEEE  (Volume:71 ,  Issue: 3 )