Cart (Loading....) | Create Account
Close category search window
 

Spectrum estimation and harmonic analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Thomson, D.J. ; Bell Laboratories, Whippany, NJ

In the choice of an estimator for the spectrum of a stationary time series from a finite sample of the process, the problems of bias control and consistency, or "smoothing," are dominant. In this paper we present a new method based on a "local" eigenexpansion to estimate the spectrum in terms of the solution of an integral equation. Computationally this method is equivalent to using the weishted average of a series of direct-spectrum estimates based on orthogonal data windows (discrete prolate spheroidal sequences) to treat both the bias and smoothing problems. Some of the attractive features of this estimate are: there are no arbitrary windows; it is a small sample theory; it is consistent; it provides an analysis-of-variance test for line components; and it has high resolution. We also show relations of this estimate to maximum-likelihood estimates, show that the estimation capacity of the estimate is high, and show applications to coherence and polyspectrum estimates.

Published in:

Proceedings of the IEEE  (Volume:70 ,  Issue: 9 )

Date of Publication:

Sept. 1982

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.