Cart (Loading....) | Create Account
Close category search window
 

Electric dyadic Green's functions in the source region

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yaghjian, A.D. ; National Bureau of Standards, Boulder, CO

A straightforward approach that does not involve delta-function techniques is used to rigorously derive a generalized electric dyadic Green's function which defines uniquely the electric field inside as well as outside the source region. The electric dyadic Green's function, unlike the magnetic Green's function and the impulse functions of linear circuit theory, requires the specification of two dyadics: the conventional dyadic G-eoutside its singularity and a source dyadic L-which is determined solely from the geometry of the "principal volume" chosen to exclude the singularity of G-e. The source dyadic L-is characterized mathematically, interpreted physically as a generalized depolarizing dyadic, and evaluated for a number of principal volumes (self-cells) which are commonly used in numerical integration or solution schemes. Discrepancies at the source point among electric dyadic Green's functions derived by a number of authors are shown to be explainable and reconcilable merely through the proper choice of the principal volume. Moreover, the ordinary delta-function method, which by itself is shown to be inadequate to extract uniquely the proper electric dyadic Green's function in the source region, can be supplemented by a simple procedure to yield unambiguously the correct Green's function representation and associated fields.

Published in:

Proceedings of the IEEE  (Volume:68 ,  Issue: 2 )

Date of Publication:

Feb. 1980

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.