By Topic

Electromagnetic fields in the presence of rotating bodies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Van Bladel, J. ; University of Ghent, Ghent, Belgium

Field calculations in the presence of rotating bodies with symmetry of revolution can be performed in the (inertial) laboratory frame of reference. Specific results are presented for a rotating circular cylinder immersed in a plane wave of the E or H type. Particular emphasis is put on the low-frequency limit, but some numerical data are also given for a typical frequency in the "resonance" region. The analysis becomes more complicated in the absence of symmetry of revolution. It is then necessary to solve the problem in a rotating system of coordinates. Maxwell's equations are written in these coordinates, together with the relevant constitutive equations and boundary conditions. The general formalism is applied to a typical two-dimensional configuration, viz., a cylinder immersed in an incident E wave. Considerable simplification obtains if all material velocities are negligible with respect to c, a condition which is always met in practice. Even simpler results are obtained if the cross-sectional dimensions of the cylinder are small with respect to λ. Some numerical results are presented, at low frequencies, for a dielectric cylinder of rectangular cross section.

Published in:

Proceedings of the IEEE  (Volume:64 ,  Issue: 3 )