Cart (Loading....) | Create Account
Close category search window
 

Self-assembly of MEMS components in air assisted by diaphragm agitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng-Hsiung Liang ; Washington Univ., Seattle, WA, USA ; Wang, K. ; Bohringer, K.F.

We present a fast and high yield self assembly process in air for submillimeter components, including released MEMS chips. Components are agitated on a vibrating diaphragm and captured on a substrate with downward facing binding sites. Low drag force in air, high capillary force at the air/liquid interface, and fast recycling of components contribute to high performance. In addition, we investigate the quantitative relationship between process parameters and assembly performance. Energy transfer from agitation source to components is measured and characterized; yield ratios and self-correcting processes for various applied energies are obtained from experimental results. The assembly rate and yield ratio are controlled by the driving signal and reach up to 0.125 components/sec-site and 93%, respectively. The process has been applied successfully to the assembly of MEMS chips with released comb drives.

Published in:

Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on

Date of Conference:

30 Jan.-3 Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.