Cart (Loading....) | Create Account
Close category search window

Definition and digital algorithms of dielectric loss factor for condition monitoring of high-voltage power equipment with harmonics emphasis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li, Q. ; Sch. of Electr. Eng., Shandong Univ., Jinan, China ; Zhao, T. ; Siew, W.H.

Experience and applications of currently available methods for online monitoring and diagnostics of high-voltage power apparatus are briefly reviewed. Based on dielectric physics, a new definition of dielectric loss factor with harmonics emphasis is proposed to evaluate the operational conditions of power apparatus on a more reasonable basis, along with corresponding digitised algorithms. Two approaches, namely the decoupling algorithm and the approximating algorithm, are presented to implement the methodologies with the new definition of dielectric loss factor. The impact of background noise and power-frequency fluctuation on estimation accuracy are analysed by computer simulations, showing better application qualities of the approximating algorithm than the decoupling algorithm. A comprehensive strategy of simultaneous monitoring of sum current, dielectric loss factor, resistive current and capacitive current is recommended to give an effective assessment and diagnosis.

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:152 ,  Issue: 3 )

Date of Publication:

6 May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.