Cart (Loading....) | Create Account
Close category search window
 

Sparse solutions to linear inverse problems with multiple measurement vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cotter, S.F. ; Electr. & Comput. Eng. Dept., Univ. of California, La Jolla, CA, USA ; Rao, B.D. ; Engan, K. ; Kreutz-Delgado, K.

We address the problem of finding sparse solutions to an underdetermined system of equations when there are multiple measurement vectors having the same, but unknown, sparsity structure. The single measurement sparse solution problem has been extensively studied in the past. Although known to be NP-hard, many single-measurement suboptimal algorithms have been formulated that have found utility in many different applications. Here, we consider in depth the extension of two classes of algorithms-Matching Pursuit (MP) and FOCal Underdetermined System Solver (FOCUSS)-to the multiple measurement case so that they may be used in applications such as neuromagnetic imaging, where multiple measurement vectors are available, and solutions with a common sparsity structure must be computed. Cost functions appropriate to the multiple measurement problem are developed, and algorithms are derived based on their minimization. A simulation study is conducted on a test-case dictionary to show how the utilization of more than one measurement vector improves the performance of the MP and FOCUSS classes of algorithm, and their performances are compared.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.