By Topic

Implementation of the hypothesis testing identification in power system state estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Mili ; Dept. of Electr. Eng., Liege Univ., Belgium ; T. Van Cutsem

The authors consider the online implementation of a general, reliable and efficient bad-data analysis procedure for power system state estimation. It is based on hypothesis testing identification, which was previously proposed and subsequently improved by the authors. The procedure involves a sequential measurement error estimator along with adequate sparsity programming techniques. Both make the procedure easy to implement on any state estimator. A criterion for multiple noninteracting bad-data identification is also proposed, which is applicable to any bad-data analysis method. Simulations are reported on systems of up to 700 buses. A thorough comparison with classical methods is also included.<>

Published in:

IEEE Transactions on Power Systems  (Volume:3 ,  Issue: 3 )