By Topic

Photocurrent spectroscopy for quantum-well intermixed photonic integrated circuit design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
G. B. Morrison ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA ; E. J. Skogen ; C. S. Wang ; J. W. Raring
more authors

Photocurrent spectroscopy is used to characterize band edges in quantum-well intermixed InGaAsP material lattice matched to InP. The band edge absorption data is used as a design tool to predict the dc performance of electroabsorption modulators, and is shown to agree well with data obtained from actual devices. In addition, we demonstrate the presence of an exciton peak in InGaAsP quantum wells, and present its evolution as a function of quantum-well intermixing and reverse bias voltage.

Published in:

IEEE Photonics Technology Letters  (Volume:17 ,  Issue: 7 )