By Topic

Combination of autocorrelation-based features and projection measure technique for speaker identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuo-Hwei Yuo ; Chung-Shan Inst. of Sci. & Technol., Tao-Yuan, Taiwan ; Tai-Hwei Hwang ; Wang, H.-C.

This paper presents a robust approach for speaker identification when the speech signal is corrupted by additive noise and channel distortion. Robust features are derived by assuming that the corrupting noise is stationary and the channel effect is fixed during an utterance. A two-step temporal filtering procedure on the autocorrelation sequence is proposed to minimize the effect of additive and convolutional noises. The first step applies a temporal filtering procedure in autocorrelation domain to remove the additive noise, and the second step is to perform the mean subtraction on the filtered autocorrelation sequence in logarithmic spectrum domain to remove the channel effect. No prior knowledge of noise characteristic is necessary. The additive noise can be a colored noise. Then the proposed robust feature is combined with the projection measure technique to gain further improvement in recognition accuracy. Experimental results show that the proposed method can significantly improve the performance of speaker identification task in noisy environment.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 4 )