Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Robustness analysis of multichannel Wiener filtering and generalized sidelobe cancellation for multimicrophone noise reduction in hearing aid applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spriet, A. ; Katholieke Univ. Leuven, Leuven-Heverlee, Belgium ; Moonen, M. ; Wouters, J.

For small-sized arrays such as hearing aids, noise reduction is obtained at the expense of an increased sensitivity to errors in the assumed signal model, i.e., microphone mismatch, variations in speaker and microphone positions, reverberation. However, the noise reduction algorithm should still be robust, i.e., insensitive to small signal model errors. In this paper, we evaluate the robustness of the Generalized Sidelobe Canceller (GSC) and a recently developed Multichannel Wiener Filtering (MWF) technique for hearing aid applications both analytically and experimentally. The analysis reveals that robustness of the GSC is especially crucial in complicated noise scenarios and that microphone mismatch is particularly harmful to the GSC, even when the adaptive noise canceller is adapted during noise only. Hence, a constraint on the noise sensitivity of the GSC is essential, at the expense of less noise reduction. The MWF on the other hand, is not affected by microphone mismatch and has a potential benefit over the robust GSC with noise sensitivity constraint. However, the MWF is sensitive to the estimation accuracy of the second order statistics of speech and noise so that its benefit may be lost in nonstationary noise scenarios.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 4 )