By Topic

Learning-based identification and iterative learning control of direct-drive robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Bukkems ; Dynamics & Control Technol. Group, Tech. Univ. Eindhoven, Netherlands ; D. Kostic ; B. de Jager ; M. Steinbuch

A combination of model-based and iterative learning control (ILC) is proposed as a method to achieve high-quality motion control of direct-drive robots in repetitive motion tasks. We include both model-based and learning components in the total control law, as their individual properties influence the performance of motion control. The model-based part of the controller compensates much of the nonlinear and coupled robot dynamics. A new procedure for estimating the parameters of the rigid body model, implemented in this part of the controller, is used. This procedure is based on a batch-adaptive control algorithm that estimates the model parameters online. Information about the dynamics not covered by the rigid body model, due to flexibilities, is acquired experimentally, by identification. The models of the flexibilities are used in the design of the iterative learning controllers for the individual joints. Use of the models facilitates quantitative prediction of performance improvement via ILC. The effectiveness of the combination of the model-based and the iterative learning controllers is demonstrated in experiments on a spatial serial direct-drive robot with revolute joints.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:13 ,  Issue: 4 )