By Topic

Genetic-based EM algorithm for learning Gaussian mixture models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Pernkopf ; Dept. of Electr. Eng., Graz Univ. of Technol., Austria ; D. Bouchaffra

We propose a genetic-based expectation-maximization (GA-EM) algorithm for learning Gaussian mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the properties of genetic algorithms (GA) and the EM algorithm by combination of both into a single procedure. The population-based stochastic search of the GA explores the search space more thoroughly than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the algorithm becomes less sensitive to its initialization. The GA-EM algorithm is elitist which maintains the monotonic convergence property of the EM algorithm. The experiments on simulated and real data show that the GA-EM outperforms the EM method since: (1) we have obtained a better MDL score while using exactly the same termination condition for both algorithms; (2) our approach identifies the number of components which were used to generate the underlying data more often than the EM algorithm.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 8 )