By Topic

On the Euclidean distance of images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liwei Wang ; Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing, China ; Yan Zhang ; Jufu Feng

We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 8 )