By Topic

Alignment of continuous video onto 3D point clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenyi Zhao ; Vision Technol. Lab, Sarnoff Corp., Princeton, NJ, USA ; D. Nister ; S. Hsu

We propose a general framework for aligning continuous (oblique) video onto 3D sensor data. We align a point cloud computed from the video onto the point cloud directly obtained from a 3D sensor. This is in contrast to existing techniques where the 2D images are aligned to a 3D model derived from the 3D sensor data. Using point clouds enables the alignment for scenes full of objects that are difficult to model; for example, trees. To compute 3D point clouds from video, motion stereo is used along with a state-of-the-art algorithm for camera pose estimation. Our experiments with real data demonstrate the advantages of the proposed registration algorithm for texturing models in large-scale semi-urban environments. The capability to align video before a 3D model is built from the 3D sensor data offers new practical opportunities for 3D modeling. We introduce a novel modeling-through-registration approach that fuses 3D information from both the 3D sensor and the video. Initial experiments with real data illustrate the potential of the proposed approach.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 8 )