By Topic

A sparse texture representation using local affine regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Lazebnik ; Beckman Inst., Illinois Univ., Urbana, IL, USA ; C. Schmid ; J. Ponce

This paper introduces a texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and nonrigid deformations. At the feature extraction stage, a sparse set of affine Harris and Laplacian regions is found in the image. Each of these regions can be thought of as a texture element having a characteristic elliptic shape and a distinctive appearance pattern. This pattern is captured in an affine-invariant fashion via a process of shape normalization followed by the computation of two novel descriptors, the spin image and the RIFT descriptor. When affine invariance is not required, the original elliptical shape serves as an additional discriminative feature for texture recognition. The proposed approach is evaluated in retrieval and classification tasks using the entire Brodatz database and a publicly available collection of 1,000 photographs of textured surfaces taken from different viewpoints.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 8 )