By Topic

An efficient basis conversion algorithm for composite fields with given representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sunar, B. ; Worcester Polytech. Inst., MA, USA

We describe an efficient method for constructing the basis conversion matrix between two given finite field representations where one is composite. We are motivated by the fact that using certain representations, e.g., low-Hamming weight polynomial or composite field representations, permits arithmetic operations such as multiplication and inversion to be computed more efficiently. An earlier work by Paar defines the conversion problem and outlines an exponential time algorithm that requires an exhaustive search in the field. Another algorithm by Sunar et al. provides a polynomial time algorithm for the limited case where the second representation is constructed (rather than initially given). The algorithm we present facilitates existing factorization algorithms and provides a randomized polynomial time algorithm to solve the basis conversion problem where the two representations are initially given. We also adapt a fast trace-based factorization algorithm to work in the composite field setting which yields a subcubic complexity algorithm for the construction of the basis conversion matrix.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 8 )