By Topic

Multisensor multitarget tracking methods based on particle filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiong Wei ; Res. Inst. of Inf. Fusion, Naval Aeronaut. Eng. Inst., Yantai, China ; Zhang jing-wei ; He You

In order to solve the multisensor multitarget tracking problem of the non-Gaussian nonlinear systems, the paper presents a multisensor joint probabilistic data association particle (MJPDAP) algorithm. At first, the algorithm permutes and combines the measurement from each sensor using the rule of generalized S-D assignment algorithm. Then, all of measurements in each assignment are combined into one equivalent measurement and the joint likelihood function of the equivalent measurement is calculated. Finally, the particle weight is updated and the state estimation of the fusion center is obtained, using joint probability data association (JPDA) method. In this paper, some Monte Carlo simulations are used to analyze the performance of the new method. The simulation results show the MJPDAP can effectively track multitarget in the nonlinear systems, and be of much better performance than the single-sensor joint probabilistic data association particle (SJPDAP) algorithm.

Published in:

Autonomous Decentralized Systems, 2005. ISADS 2005. Proceedings

Date of Conference:

4-8 April 2005