Cart (Loading....) | Create Account
Close category search window
 

A study of locking phenomena in oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Adler, Robert ; Zenith Radio Corporation, Chicago, Ill.

Impression of an external signal upon an oscillator of similar fundamental frequency affects both the instantaneous amplitude and instantaneous frequency. Using the assumption that time constants in the oscillator circuit are small compared to the length of one beat cycle, a differential equation is derived which gives the oscillator phase as a function of time. With the aid of this equation, the transient process of "pull-in" as well as the production of a distorted beat note are described in detail. It is shown that the same equation serves to describe the motion of a pendulum suspended in a viscous fluid inside a rotating container. The whole range of locking phenomena is illustrated with the aid of this simple mechanical model.

Published in:

Proceedings of the IEEE  (Volume:61 ,  Issue: 10 )

Date of Publication:

Oct. 1973

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.