By Topic

Balloon gravimetry using GPS and INS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jekeli, C. ; Phillips Lab. AFSC, Hanscom AFB, MA, USA

Measurement of the horizontal components of gravity at altitude using balloon-borne instrumentation consisting of a Global Positioning System (GPS) receiver and a strapdown inertial navigation system (INS) is discussed. GPS data are to be used primarily to determine the total inertial acceleration of the balloon, while the INS accelerometers sense all nongravitational accelerations. A covariance analysis based on the Kalman filter shows that conventional gravity estimation from GPS-aided INS data is possible only if external attitude updates are also available. An alternative technique is explored that attempts to estimate at least part of the gravitational spectrum without modeling the gravity disturbance as a state variable or relying on external attitude updates, while, at the same time, admitting uncorrected (long-wavelength) attitude errors. Simulations based on a model for typical balloon motion are used to discuss this possibility.<>

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:7 ,  Issue: 6 )