Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Transmission of SDH signals through future satellite channels using high-level modulation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aghvami, A.H. ; King''s Coll., London Univ., UK ; Gemikonakli, O. ; Kato, S.

The authors discuss the possibility of transmitting synchronous digital hierarchy (SDH) signals through two-link nonlinear satellite channels. Transmitting such high bit rate signals through a standard 54 MHz or 36 MHz transponder bandwidth requires the use of high-level modulation schemes. The techniques and technologies needed to make the use of 16-ary quadrature amplitude modulation (QAM) and 64-ary QAM transmissions feasible for future satellite communication systems are examined. It is shown that it is possible to transmit a synchronous transport module-level 1 (STM-1) signal through a standard 54 or 36 MHz transponder bandwidth using 16-ary QAM or 64-ary QAM transmission, respectively, for the 6/4 GHz band. However, for higher frequency bands, due to high fade margins needed to achieve the high availability and performance for SDH systems, is not practical to transmit the STM-1 signal through such standard transponder bandwidths

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:10 ,  Issue: 6 )