By Topic

Infrared heterodyne detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Teich, M.C. ; Columbia University, New York, N.Y.

Heterodyne experiments have been performed in the middle infrared region of the electromagnetic spectrum using the CO2laser as a radiation source. Theoretically optimum operation has been achieved at kHz heterodyne frequencies using photoconductive Ge:Cu detectors operated at 4°K, and at kHz and MHz frequencies using Pb1-xSnxSe photovoltaic detectors at 77°K. In accordance with the theory, the minimum detectable power observed is a factor of 2/η greater than the theoretically perfect quantum counter, hvΔf. The coefficient 2/η varies from 5 to 25 for the detectors investigated in this study. A comparison is made between photoconductive and photodiode detectors for heterodyne use in the infrared, and it is concluded that both are useful. Heterodyne detection at 10.6 µm is expected to be useful for communications applications, infrared radar, and heterodyne spectroscopy. It has particular significance because of the high radiation power available from the CO2laser, and because of the 8 to 14 µm atmospheric window.

Published in:

Proceedings of the IEEE  (Volume:56 ,  Issue: 1 )