Cart (Loading....) | Create Account
Close category search window

The (d,k) subcode of a linear block code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patapoutian, Ara ; IBM, Tucson, AZ, USA ; Kumar, P.Y.

A simple technique employing linear block codes to construct (d,k) error-correcting block codes is considered. This scheme allows asymptotically reliable transmission at rate R over a BSC channel with capacity CBSC provided R Cd,k-(1+CBSC), where Cd,k is the maximum entropy of a (d,k ) source. For the same error-correcting capability, the loss in code rate incurred by a multiple-error correcting (d,k) code resulting from this scheme is no greater than that incurred by the parent linear block code. The single-error correcting code is asymptotically optimal. A modification allows the correction of single bit-shaft errors as well. Decoding can be accomplished using off-the-shelf decoders. A systematic (but suboptimal) encoding scheme and detailed case studies are provided

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 4 )

Date of Publication:

Jul 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.