By Topic

Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes over GF(3) and GF(4)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gulliver, T.A. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; Bhargava, V.K.

The class of quasi-cyclic (QC) codes has been proven to contain many good codes. To date the known QC codes are primarily rate 1/p and (p-1)/p binary codes constructed from circulant matrices. These results are extended to QC codes over GF(3) and GF(4). Codes are constructed using integer linear programming and heuristic combinatorial optimization. Many of these attain the maximum possible minimum distance for any linear code with the same parameters, and several improve the maximum known distances. The link between power residue (PR) codes and QC codes is exploited as a means of constructing new QC codes and to initialize the search algorithm. Previously unknown minimum distances for nonbinary quadratic residue codes are given. The minimum distances for the PR codes and the maximum known distances for the QC codes are tabulated

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 4 )