By Topic

Universal prediction of individual sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feder, M. ; Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Israel ; Merhav, N. ; Gutman, M.

The problem of predicting the next outcome of an individual binary sequence using finite memory is considered. The finite-state predictability of an infinite sequence is defined as the minimum fraction of prediction errors that can be made by any finite-state (FS) predictor. It is proven that this FS predictability can be achieved by universal sequential prediction schemes. An efficient prediction procedure based on the incremental parsing procedure of the Lempel-Ziv data compression algorithm is shown to achieve asymptotically the FS predictability. Some relations between compressibility and predictability are discussed, and the predictability is proposed as an additional measure of the complexity of a sequence

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 4 )