Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Exponential sums and Goppa codes. II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moreno, C.J. ; Baruch Coll. & Graduate Center, City Univ. of New York, Salem, NY, USA ; Moreno, O.

For pt.I, see Proc. AMS, vol.III, p.523-31 (1991). The minimum distance of a Goppa code is found when the length of code satisfies a certain inequality on the degree of the Goppa polynomial. In order to do this, conditions are improved on a theorem of E. Bombieri (1966). This improvement is used also to generalize a previous result on the minimum distance of the dual of a Goppa code. This approach is generalized and results are obtained about the parameters of a class of subfield subcodes of geometric Goppa codes; in other words, the covering radii are estimated, and further, the number of information symbols whenever the minimum distance is small in relation to the length of the code is found. Finally, a bound on the minimum distance of the dual code is discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 4 )