By Topic

z-domain model for discrete-time PLL's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. P. Hein ; AT&T Bell Lab., Reading, PA, USA ; J. W. Scott

The well-known s-domain model for continuous-time phase-locked loops (PLLs) is a fundamental tool for the linearized analysis of these systems. For PLLs with digital inputs and outputs, however, a discrete-time z-domain model more accurately describes loop behavior. In this study, a methodology is described for obtaining an accurate z-domain description of a discrete-time PLL. The modeling technique transforms portions of the s-domain PLL model directly into the z-domain, requiring only straightforward algebraic manipulations even for complex loop filters. This methodology is demonstrated for a simple loop filter, and measurements from the digital signaling interface integrated circuit are used to compare s-domain, z-domain, and time-step analysis results for a more complicated loop filter. The z-domain model, although only incrementally more complicated than the s-domain model, is shown to be more accurate, especially at higher jitter frequencies

Published in:

IEEE Transactions on Circuits and Systems  (Volume:35 ,  Issue: 11 )