By Topic

Tracking multitarget in cluttered environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, H.M. ; Dept. of Electr. Eng., Chung Cheng Inst. of Technol., Tashi, Taiwan ; Shu-Min Chiang

A method for multitarget tracking and initiating tracking in a cluttered environment is proposed. The algorithm uses a sliding window of length uT (T is the sampling time) to keep the measurement sequence at time k. Instead of solving a large problem, the entire set of targets and measurements is divided into several clusters so that a number of smaller problems are solved independently. When a set of measurements is received, a new set of data-association hypotheses is formed for all the measurements lying in the validation gates within each cluster from time K-u+1 to K. The probability of each track history is computed, and, choosing the largest of these histories, the target measurement is updated with an adaptive state estimator. A covariance-matching technique is used to improve the accuracy of the adaptive state estimator. In several examples, the algorithm successfully tracks targets over a wide range of conditions

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )