System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

M-ary sequential hypothesis tests for automatic target recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jouny, I. ; Dept. of Electr. Eng., Lafayette Coll., Easton, PA, USA ; Garber, E.D.

Several forms of sequential hypothesis testing algorithms are described and their performance as classification algorithms for automatic target recognition is evaluated and compared. Several forms of parameteric algorithms, as well as a sequential form of a useful nonparametric algorithm are considered. The primary focus is the design of algorithms for automatic target recognition that produce maximally reliable decisions while requiring, on the average, a minimum number of backscatter measurements. The tradeoffs between the average number of required measurements and the error performance of the resulting algorithms are compared by means of Monte-Carlo simulation studies

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )