By Topic

Analysis and performance of a light-sensitive capacitor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sihvonen, Y.T. ; Texas Instruments Inc., Dallas, Tex. ; Boyd, D.R. ; Kitts, E.L., Jr.

A comprehensive study has been made of a duo-dielectric capacitor in which one of the dielectrics is photoconducting and the other inert. Under dark conditions, device capacitance per unit area is set by the respective dielectric coefficients, conductivities, and thicknesses. Illumination causes device capacitance to change, and decreases the interfacial polarization relaxation time. Analysis reveals the means to optimize device performance, and the existence of a light-dark capacitance ratio-cutoff frequency limitation. A fabricated unit, utilizing CdS with BaTiO3, exhibited a capacitance change of 2500 times and a frequency span extending to 0.22 Mc/s. A CdS:silicone plastic unit showed a maximum capacitance change of 20 times and a frequency span of ∼10 Mc/s, but had degraded dark performance attributed to electron traps, and an interesting piezo-electric resonance that affected both capacitance and dissipation factor at 0.315 Mc/s. Applications of this type of a light-sensitive capacitor are limited to specialized situations where a maximizing dissipation factor and a varying frequency bandwidth can be tolerated.

Published in:

Proceedings of the IEEE  (Volume:53 ,  Issue: 4 )