By Topic

A self-consistent model for negative glow discharge lasers: the hollow cathode helium mercury laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fetzer, G.J. ; Lear Siegler Measurement Controls Corp., Englewood, CO, USA ; Rocca, J.J.

A model for negative glow metal-vapor ion lasers that self-consistently describes the dynamics of the negative glow and the cathode sheath regions of the discharge has been developed. The model computes the electron energy distribution and the population of relevant excited states in the negative glow self-consistently with the charged particles fluxes and electric field distribution in the cathode sheath. Its application to the study of the helium-mercury charge transfer ion laser is reported. The model accurately depicts the operation of a hollow cathode in the laboratory, where for a defined cathode geometry and material, the discharge characteristics are determined by the selected discharge voltage and the gas pressure. The laser output power calculated as a function of the discharge parameters is in good agreement with experimental measurements reported in the literature. The model can be modified to simulate other negative glow discharge lasers, such as electron-beam pumped CW ion lasers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 9 )