Cart (Loading....) | Create Account
Close category search window

Modeling the static and dynamic behavior of quarter-wave-shifted DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lowery, A.J. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Keating, A. ; Murtonen, C.N.

High-coupling (grating coupling constant=3.0) phase-shifted distributed-feedback (DFB) lasers are studied using a transmission-line laser model (TTLM) which includes spatial hole burning (SHB), the material gain spectrum, refractive index dependence on carrier concentration, and random spontaneous emission. Good agreement for CW spectra is shown with other models and experimental results. Dynamic simulation of laser transients shows SHB-induced deterministic mode hopping and chirping at moderate output powers. The effects of mode hopping and chirping on system performance are studied using a laser model combined with a fiber model

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 9 )

Date of Publication:

Sep 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.