By Topic

Comparison of quantum and semiclassical radiation theories with application to the beam maser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaynes, E.T. ; Washington University, St. Louis, Mo. ; Cummings, F.W.

This paper has two purposes: 1) to clarify the relationship between the quantum theory of radiation, where the electromagnetic field-expansion coefficients satisfy commutation relations, and the semiclassical theory, where the electromagnetic field is considered as a definite function of time rather than as an operator; and 2) to apply some of the results in a study of amplitude and frequency stability in a molecular beam maser. In 1), it is shown that the semiclassical theory, when extended te take into account both the effect of the field on the molecules and the effect of the molecules on the field, reproduces almost quantitatively the same laws of energy exchange and coherence properties as the quantized field theory, even in the limit of one or a few quanta in the field mode. In particular, the semiclassical theory is shown to lead to a prediction of spontaneous emission, with the same decay rate as given by quantum electrodynamics, described by the Einstein A coefficients. In 2), the semiclassical theory is applied to the molecular beam maser. Equilibrium amplitude and frequency of oscillation are obtained for an arbitrary velocity distribution of focused molecules, generalizing the results obtained previously by Gordon, Zeiger, and Townes for a singel-velocity beam, and by Lamb and Helmer for a Maxwellian beam. A somewhat surprising result is obtained; which is that the measurable properties of the maser, such as starting current, effective molecular Q, etc., depend mostly on the slowest 5 to 10 per cent of the molecules. Next we calculate the effect of amplitude and frequency of oscillation, of small systematic perturbations. We obtain a prediction that stability can be improved by adjusting the system so that the molecules emit all their energy h Ω to the field, then reabsorb part of it, before leaving the cavity. In general, the most stable operation is obtained when the molecules are in the process of absorbing energy from the radiation as they leave the cavity, most unstable when they are still emitting energy at that time. Finally, we consider the response of an oscillating maser to randomly time-varying perturbations. Graphs are given showing predicted response to a small superimposed signal of a frequency near the - oscillation frequency. The existence of "noise enhancing" and "noise quieting" modes of operation found here is a general property of any oscillating system in which amplitude is limited by nonlinearity.

Published in:

Proceedings of the IEEE  (Volume:51 ,  Issue: 1 )