By Topic

Parallel event-driven neural network simulations using the Hodgkin-Huxley neuron model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lobb, C.J. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Chao, Z. ; Fujimoto, R.M. ; Potter, S.M.

Neural systems are composed of a large number of highly-connected neurons and are widely simulated within the neurological community. In this paper, we examine the application of parallel discrete event simulation techniques to networks of a complex model called the Hodgkin-Huxley neuron. We describe the conversion of this model into an event-driven simulation, a technique that offers the potential of much greater performance in parallel and distributed simulations compared to time-stepped techniques. We report results of an initial set of experiments conducted to determine the feasibility of this parallel event-driven Hodgkin-Huxley model and analyze its viability for large-scale neural simulations.

Published in:

Principles of Advanced and Distributed Simulation, 2005. PADS 2005. Workshop on

Date of Conference:

1-3 June 2005