By Topic

Further improving geometric fitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kanatani, K. ; Dept. of Comput. Sci., Okayama Univ., Japan

We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.

Published in:

3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on

Date of Conference:

13-16 June 2005