By Topic

Short PCPs verifiable in polylogarithmic time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ben-Sasson, E. ; Dept. of Comput. Sci., Technion, Haifa, Israel ; Goldreich, Oded ; Harsha, P. ; Sudan, M.
more authors

We show that every language in NP has a probabilistically checkable proof of proximity (i.e., proofs asserting that an instance is "close" to a member of the language), where the verifier's running time is polylogarithmic in the input size and the length of the probabilistically checkable proof is only polylogarithmically larger that the length of the classical proof. (Such a verifier can only query polylogarithmically many bits of the input instance and the proof. Thus it needs oracle access to the input as well as the proof, and cannot guarantee that the input is in the language - only that it is close to some string in the language.) If the verifier is restricted further in its query complexity and only allowed q queries, then the proof size blows up by a factor of 2(log n)cq/ where the constant c depends only on the language (and is independent of q). Our results thus give efficient (in the sense of running time) versions of the shortest known PCPs, due to Ben-Sasson et al. (STOC '04) and Ben-Sasson and Sudan (STOC '05), respectively. The time complexity of the verifier and the size of the proof were the original emphases in the definition of holographic proofs, due to Babai et al. (STOC '91), and our work is the first to return to these emphases since their work. Of technical interest in our proof is a new complete problem for NEXP based on constraint satisfaction problems with very low complexity constraints, and techniques to arithmetize such constraints over fields of small characteristic.

Published in:

Computational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on

Date of Conference:

11-15 June 2005