By Topic

Bayesian networks and influence diagrams as valid decision support tools in systolic heart failure management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Fernandez ; Univ. Politecnica de Madrid, Spain ; M. Martinez-Selles ; M. T. Arredondo

Heart failure is a complex syndrome that affects more than 5% of the population over 65, and whose direct costs account for a 2% of the health budget in developed countries. The existing interrelations among the different causes, mechanisms, symptoms and treatments associated to the condition complicate its modeling and, hence, the development of decision support tools which assist health professionals. This article describes the use of a Bayesian network in the modeling of heart contractility dysfunctions reflected in the condition of systolic heart failure and the use of influence diagrams in the decision for treatment actions. The resulting network estimates the probability of a patient for developing an asymptomatic ventricular systolic dysfunction and systolic heart failure from the specification of signs, symptoms, risk factors, cardiovascular disorders or diagnosis tests results. Based on that, the network informs about the convenience of applying a preventive or a corrective treatment.

Published in:

Computers in Cardiology, 2004

Date of Conference:

19-22 Sept. 2004