By Topic

Embedded decoupling capacitor performance in high speed circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Lixi Wan ; Center for Packaging Res., Georgia Technol. Inst., Atlanta, GA, USA ; P. M. Raj ; D. Balaraman ; P. Muthana
more authors

Embedded decoupling is normally considered a better solution than surface mount decoupling for suppressing the switching noise of a high speed digital board/package because of its shorter leads that result in smaller parasitic inductance. This leads to lower impedance over a higher frequency band. It is presumably better in reliability and lowers the cost as well. Designers tend to use large value capacitors for efficient decoupling. Usually, to increase capacitance of an embedded capacitor, one can use a material with higher dielectric constant, design larger electrodes, and reduce the thickness of the dielectric. However, these strategies may sometimes lead to lower performance at high frequency band. This paper will discuss the pros and cons of different embedded capacitor approaches through simulation. As an application example, a typical power/ground network with an embedded capacitor will be compared with that of surface mount discrete capacitor.

Published in:

Proceedings Electronic Components and Technology, 2005. ECTC '05.

Date of Conference:

31 May-3 June 2005